Oil and Gas

Oil and Gas | Reservoir Development

Compartmentalization and Connectivity in Sandstone Reservoirs

Course Code: N342
Instructors:  John Snedden
Course Outline:  Download
Format and Duration
5 days
10 sessions

Next Event

Location: Virtual
Date:  26th Sep - 7th Oct 2022
Event Code: N342a22V
Fee From: USD $5,105 (exc. Tax)


Business Impact: The reservoir connectivity workflow taught in this course has proven successful in increasing field reserves by identification of new or underdepleted compartments, deeper oil/water contacts, oil columns in gas-dominated closures, and cross-fault flow or channel to channel reservoir flow that increases overall activity.

The complex interplay of fluids and rock architecture controls efficient depletion of conventional sandstone reservoirs. Stratigraphic and structural analyses often provide much detail, but static and dynamic connectivity information reveal the elements that really matter to flow. This course uses fluid, pressure, log, seismic, and core data to examine the movement of reservoir fluids (oil, gas, water) over geologic and production timescales and determine which factors are critical in the development and exploitation of siliciclastic hydrocarbon reservoirs.


This course has been both a refresher for some concepts and a learning experience for new ones introduced, which has been most helpful.


Event Code: N342a22V
Sessions: 10 sessions
Instructors: John Snedden
Dates: 26th Sep - 7th Oct 2022
Location: Virtual
Fee From
USD $5,105 (exc. Tax)
Good Availability
Please login to book.

Duration and Training Method

This is a classroom or virtual classroom course comprising a mixture of lectures, discussion, case studies, numerical simulations and practical exercises.

Course Overview

Participants will learn to:

  1. Assess “what really matters to flow” at geologic and production timescales.
  2. Select potential reservoir compartments from analysis of structure contour maps.
  3. Evaluate static and dynamic pressure data to evaluate shale barriers, baffles, erosion by channels and scours.
  4. Characterize controls upon shale bed continuity (2D/3D).
  5. Evaluate isopach maps to identify potential underdepleted field compartments.
  6. Predict compartmentalization caused by interaction of faults and reservoir sand bodies. 
  7. Select and utilize concepts like the breakover point and other topologic controls on fluid contacts.
  8. Characterise differing GOC/OWC’s and differentiate from perched water.
  9. Evaluate discovery and appraisal wells and use data to construct a set of plausible reservoir connectivity scenarios.
  10. Understand how dynamic field changes as determined from 4D seismic, PLT's, pressure buildups, downhole pressure gauges, and time-lapse geochemistry are used in production. 
  11. Appraise differing connectivity challenges of fluvial, shoreline, deltaic, and deepwater reservoirs.
  12. Evaluate key sedimentological and geologic factors controlling porosity, permeability, net to gross, and sand body and shale bed continuity.

1. Introduction

  • Beyond “Dry Rock” reservoir architecture: geofluid distribution as an indication of what really matters to flow
  • Reservoir Properties: Why depositional environment really matters
  • Exercise: Reservoir properties and impact on exploration prospect risking
  • Static (geologic) connectivity versus Dynamic (production-time scale) connectivity
  • Understanding reservoir connectivity from a joint rock and fluid perspective
    • Traps, compartments (versus flow units), breakover, aquifer separation
    • Connectivity concepts in two- and three-fluid systems
  • Exercise: Compartment identification in mixed-influence deltaic reservoir
    • Identification of reservoir compartments from structure contour maps
  • Exercise: Fluid contact scenarios
    • Two- and three-fluid compartments, compartment diagrams, fault plane profiles

2. Static Connectivity

  • Topological controls on fluid distributions in fluvial and deepwater channelized systems
  • Perched water versus separated aquifers
  • The hierarchy of shale barriers and baffles in distributive deltaic and shore zone systems
  • Top seal control on fluid contact elevation: three classes of capillary seals and traps
  • Exercise: Classification of oil and gas compartments by Sales (spill vs. leak) and Sneider (top seal character) parameters (spreadsheet)
  • Scours: fluvial versus deepwater types; 3D seismic, forward seismic models, physical experiments
  • Shale bed continuity in 3-dimensions
  • Exercise: Fluvial channel reservoir connectivity
    • Correlation of High NTG channels in a large field in the North Sea
    • Recognition of sequence boundaries using core and log data
    • Use of MDT pressure data to evaluate shale baffles, barriers, erosion by scour
    • Construction of isopach maps, determination of underdepleted field compartments, planning infill drilling


3. Dynamic Connectivity

  • The effect of channel base scours on fluid communication
  • Barrier breakthrough: myths and reality: numerical models
  • Fluid cusping vs. fluid coning: why these are often confused; case study
  • Investigating connectivity with 4D seismic and PLT’s
  • Exercise: Construction of connectivity scenarios: fluvially-dominated delta
    • Fault-bounded compartments versus delta lobe compartments
    • Construction of connectivity scenarios
    • Use of static and dynamic data in discriminating between three connectivity scenarios
    • Understanding hierarchy of shales and its role in modeling of deltas and deepwater distributive systems
  • Fault connectivity (cross-fault flow) at geologic and production time scales
    • Use of fault plane profiles to identify cross fault flow
    • Importance of delta throw/shale bed ratios
    • Clay smear vs. SGR: field observations and experimental models

4. Connectivity Input to reservoir engineering and simulation models

  • Fault dip and bed dip: parallel versus divergent trends and effect on water and gas flooding
  • Placing scours and shales in geological models: stochastic versus deterministic
  • Exercise: Fault and deepwater sand body interaction
    • See production differences between amalgamated channel and channel-levee reservoirs
    • Observe separate oil-water contacts and dynamic connectivity not predicted by static data
    • Explain compartmentalization created by interaction of faults and channels
    • Construct static connectivity diagram and use to understand dynamic performance trends
    • Evaluate development and post-production startup results from connectivity models

This course has been designed for geoscientists and petrophysicists, as well as reservoir and completion engineers, who wish to develop a broader understanding of controls on reservoir performance.

John Snedden


Dr. Snedden, project leader of the Gulf of Mexico Basin Depositional Synthesis (GBDS) Project, has over 25 years of industry experience with Mobil and ExxonMobil, including 11 years in research. John's technical specialties include sequence and seismic stratigraphy, sedimentology, reservoir characterization, reservoir connectivity analysis, and unconventional resource evaluation. He has worked in a number of basins, including the U.S. Gulf Coast, West Texas Midland Basin, North Sea, Mid-Norway, Barents Sea, Papua New Guinea, Arkoma Basin, Niger Delta, Sarawak (Malaysia), Mahakam Delta (Indonesia), U.S. Atlantic Shelf, Northwest Shelf Australia, Pannonian Basin (Hungary), South Caspian Sea (Azerbaijan-Turkmenistan), China, Norwegian Sea, Gulf of Mexico shelf and slope, North Caspian Basin (Kazakhstan), and the Lower Saxony and Ruhr-Muensterland Basins, Germany (unconventional, CBM, Shale Gas, Light Tight Oil).

John has published over 30 scientific papers: he is the first author on 23 of these. John has a history of leadership in technical societies such as SEPM and the Gulf Coast Section of SEPM. He has also served as technical chair of several large AAPG conventions. He is lead author of the book Gulf of Mexico Sedimentary Basin: Depositional Evolution and Petroleum Applications published by Cambridge University Press in November 2019.

Affiliations and Accreditation
PhD Louisiana State University, Baton Rouge, LA
MS Texas A&M University, College Station, TX
BA  Trinity University, San Antonio, TX

Courses Taught
N043: Gulf Of Mexico Petroleum Systems
N342: Compartmentalization and Connectivity in Sandstone Reservoirs
N343: Depositional Evolution of the Gulf of Mexico Sedimentary Basin
N349: Practical Methods for Sequence Stratigraphic Prediction

CEU: 4 Continuing Education Units
PDH: 40 Professional Development Hours
Certificate: Certificate Issued Upon Completion
RPS is accredited by the International Association for Continuing Education and Training (IACET) and is authorized to issue the IACET CEU. We comply with the ANSI/IACET Standard, which is recognised internationally as a standard of excellence in instructional practices.
We issue a Certificate of Attendance which verifies the number of training hours attended. Our courses are generally accepted by most professional licensing boards/associations towards continuing education credits. Please check with your licensing board to determine if the courses and certificate of attendance meet their specific criteria.