Oil and Gas

Oil and Gas | Geophysics and Seismic Interpretation

Geophysics for Subsurface Professionals

Course Code: N080
Instructors:  Steve Western
Course Outline:  Download
Format and Duration:
3 days
5 sessions

Summary

The course also provides an appreciation of the strengths and weaknesses of key seismic methods such as migration and inversion. Additionally, you will know what questions to ask about structural imaging and depth maps, seismic prediction of reservoir properties such as lithology, porosity, fluid type, thickness and fractures as well as pressure prediction. You will also learn a practical workflow for interpreting 3D seismic.

Business Impact: This multidiscipline course will provide geoscientists and engineers with a practical understanding of what the seismic method can provide to impact business decisions. Specifically, we present how the seismic method is used to evaluate geologic risk, characterize reservoirs properties, estimate resource potential, optimize drilling locations and avoid drilling hazards.

Feedback

Excellent course, well taught by someone with real industry experience.

Duration and Training Method

This is a classroom or virtual classroom course comprising a mixture of lectures, discussion, case studies, and practical exercises.

 

Course Overview

Participants will learn to:

  1. Describe the fundamentals of seismic propagation using wavefronts or raypaths, as appropriate.
  2. Identify the various types of seismic waves and their relevance to different scenarios.
  3. Appreciate the importance of rock parameters, especially velocity and density, in understanding the results of the seismic method.
  4. Describe the fundamentals of surface and borehole seismic acquisition and processing, sonic logs and microseismic.
  5. Appreciate the difference between the time and depth domains and how to convert between them.
  6. Recognise the importance of resolution and how to maximise it.
  7. Appreciate how seismic data is affected by rock properties such as porosity, lithology, fluid content, fractures and pressure and how seismic can be used to predict these parameters.
  8. Recognise how it is possible to estimate reservoir properties from seismic data using AVO and inversion techniques integrated with petrophysical data.
  9. Review how seismic anisotropy is used to predict fracture density and orientation, anticipate drilling hazards and optimize well locations.
  10. Learn how to calculate various types of subsurface pressure and use pressure prediction to design wells, avoid drilling hazards and optimize reservoir production.
  11. Apply a 3D seismic interpretation workflow to a large survey over the Gippsland Basin, offshore Australia. Hands-on interpretation of a regional seismic grid serves to reaffirm key interpretation concepts.

Preface: comparison of seismic workflows for conventional and unconventional plays

Introduction

  • Basic concepts – types of sources, types of waves – surface, body, P, S
  • Wavefronts vs. raypaths
  • Velocity and density, acoustic impedance
  • Reflections, reflection coefficient, depth to time conversion
  • Shot gathers, single fold, multiple fold
  • Stacking and zero-offset concept
  • 2D geometry and coverage

 Structural imaging

  • Modelling – normal incidence, vertical incidence
  • Principles of 2D marine and land acquisition
  • 2D processing – statics, velocity analysis, NMO, stack
  • Time migration, migration velocity, diffractions
  • Simple depth conversion, average and interval velocity

Borehole geophysics

  • Sonic logging - conventional and dipole
  • Check Shots
  • VSPs - Vertical, Walkabove, Offset, Walkaway
  • Cross-well seismic

Calibrated reservoir mapping

  • Wavelets, frequency domain, phase
  • Calibration to wells
  • Vertical resolution, wedge model, tuning
  • Horizontal resolution, diffractions, aperture
  • Synthetic seismograms
  • Amplitude mapping for sand thickness
  • Porosity prediction and mapping

3D seismic imaging

  • 3D land and marine acquisition
  • 3D binning, processing and time migration
  • Image ray tracing, depth migration
  • Complex depth conversion and map migration

Lithology, porosity and fluid prediction

  • P and S waves, earth parameters, moduli, Poisson’s ratio
  • Fluid substitution
  • AVO modelling and analysis – reconnaissance and detailed
  • Inversion for acoustic and elastic impedance and Poisson’s ratio

 Fracture detection and anisotropy

  • Anisotropy – azimuthal, VTI
  • Fracture detection and mapping
  • Effect on velocities and AVO

Pressure prediction

  • Causes of overpressure, shale porosity, equivalent depth, Eaton method
  • Prediction from sonic log
  • Prediction from seismic velocities

3D Seismic interpretation workflow

  • Gippsland basin 3D, offshore Australia

This course is designed for geoscientists, petrophysicists and engineers involved in multidiscipline teams using geophysical techniques as well as individuals responsible for managing or supervising exploration or asset teams.

Steve Western

Background
Steve is an exploration geophysicist having over 35 years of experience evaluating oil and gas opportunities spanning domestic and international, onshore and offshore areas. Leadership positions include Manager of Technical Excellence (EP Energy), U.S. Exploration Manager (Burlington), Chief Geophysicist / Manager Geophysical Technology (Burlington), Deepwater Gulf of Mexico Exploration Manager (Occidental) and Deepwater Gulf of Mexico Subsalt and Geophysical Technology Manager (BP).

Steve enjoys working on complex problems requiring the integration of geoscience and engineering technologies. His main areas of technical interest are reservoir characterization techniques for conventional and unconventional plays, seismic imaging and formulation of technical and business strategies.

Steve attended numerous industry-sponsored classes in geology and geophysics, with recent emphasis on the geologic and geophysical evaluation of unconventional plays. Steve is a member of the Society of Exploration Geophysicists, the Houston Geological Society, the Geophysical Society of Houston, and the Society of Petroleum Engineers.

Affiliations and Accreditation
M.B.A. Houston Baptist University.
MSc Texas Christian University - Geology
BSc University of Texas at Arlington - Physics

Courses Taught
N080: Geophysics for Subsurface Professionals
N443: Essentials of Geophysics

CEU: 2.1 Continuing Education Units
PDH: 21 Professional Development Hours
Certificate: Certificate Issued Upon Completion
RPS is accredited by the International Association for Continuing Education and Training (IACET) and is authorized to issue the IACET CEU. We comply with the ANSI/IACET Standard, which is recognised internationally as a standard of excellence in instructional practices.
We issue a Certificate of Attendance which verifies the number of training hours attended. Our courses are generally accepted by most professional licensing boards/associations towards continuing education credits. Please check with your licensing board to determine if the courses and certificate of attendance meet their specific criteria.