Oil and Gas
Oil and Gas | Carbonates
Integration of Sedimentology, Petrophysics and Seismic Interpretation for Exploration and Production of Carbonate Systems
Next Event
This course provides a comprehensive overview of necessary concepts for seismic interpretation in carbonate systems for successful exploration and production. The newest concepts in depositional and microbial processes in shallow and deep water carbonate environments, rock physics, and sequence stratigraphy are presented through a combination of lectures, case studies and exercises.
Participants will be exposed to many aspects of seismic stratigraphic interpretation related to carbonate reservoirs in traditional, unconventional and lacustrine environments.
Business Impact: Participants of this course will have the necessary knowledge for assessing different plays in carbonates as they will be familiar with a wide range of carbonate depositional environments. The course outlines what aspects are different from clastics and thus improves success in exploration and reservoir characterization of carbonates. The petrophysical portion will give the participants the expertise to better assess uncertainties in predicting reservoir properties with geophysical methods such as saturation using AVO and porosity from seismic inversion.
Feedback
Schedule
Duration and Training Method
This is a classroom or virtual classroom course comprising a mixture of lectures, exercises, case studies, and disucssions. Participants are encouraged to bring relevant material that can contribute to the discussion.
Course Overview
Learning Outcomes
Participants will learn how to:
- Appraise common carbonate seismic facies and geometries.
- Assess the diagenetic influence on porosity, permeability, and sonic velocity of carbonate reservoirs.
- Evaluate possible carbonate depositional environments on seismic data and predict the facies within the various environments.
- Evaluate the usage of seismic attributes in interpreting carbonates.
- Examine potential reservoirs in carbonate contourite systems.
- Appreciate the difficulty of distinguishing carbonate buildups from volcanic edifices.
- Perform seismic stratigraphic interpretations to predict, map and quantify carbonate reservoirs.
- Integrate stratigraphic principles into a carbonate interpretation.
- Evaluate seismic data for an integrated carbonate reservoir characterization.
- Evaluate the controlling factors for variations of carbonates in unconventional reservoirs.
Course Content
Session 1
Carbonate Depositional Systems: morphologies of shelf, isolated platform, ramp:
- Unique aspects of carbonates
- Modern examples of ramp, shelf and isolated platforms
- Oligo - Miocene Carbonate Ramp Systems
- Apulia and elsewhere
Seismic Geometry and Facies in Carbonate Systems:
- Seismic facies analysis of carbonate systems
Session 2
Carbonate Depositional Systems: slope and basin:
- Modern carbonate slopes: morphology, processes and facies
- Carbonate contourite drift systems - overview
- Carbonate contourites and the petroleum system
Session 3
Carbonate Petrophysics:
- Carbonate diagenesis and its influence on petrophysical properties
- Control on sonic velocity and resistivity in carbonates
- Rock physics models explaining velocity variations in carbonates
- Porosity types and porosity models for carbonates
- Effect of Saturation on Velocity in Carbonates
Session 4
Carbonate Microbialites:
- Modern stromatolites and associated facies
- Microbial processes influence on reservoir quality
- Petrophysical properties of microbialites
- Lessons from the modern carbonates for the exploration in the Presalt
Session 5
Carbonate Sequence Stratigraphy:
- Introduction to carbonate sequence stratigraphy
- Comparison of sequence stratigraphic models
Session 6
(Seismic) Carbonate Reservoir Characterization:
- Carbonate depositional cycles as building blocks for reservoirs
- Fractures within depositional cycles and flow units
- Workflow in seismic reservoir characterization illustrated on Giant field in Abu Dhabi
Session 7
Challenges in Carbonate Exploration:
- Distinguishing carbonates buildups from volcanic edifices in seismic data
Session 8
Mixing of Carbonate and Siliciclastics
- Mixed systems in conventional reservoirs
- Mixing in unconventional reservoirs
- Depositional and diagenetic processes of fine-grained carbonates
Exercises Included
This course integrates practical exercises to complement theoretical learning. You will complete exercises on:
- Oligo - Miocene Carbonate Ramp Systems
- Carbonate Depositional Systems: slope and basin
- Rock physics models explaining velocity variations in carbonates
- Porosity types and porosity models for carbonates
- Effect of Saturation on Velocity in Carbonates
- Carbonate Microbialites
- Sequence analysis
- (Seismic) Carbonate Reservoir Characterization
- Fractures within depositional cycles and flow units
- Workflow in seismic reservoir characterization illustrated on Giant field in Abu Dhabi
- Challenges in Carbonate Exploration:
- Mixing of Carbonate and Siliciclastics
- Mixed systems in conventional reservoirs
- Mixing in unconventional reservoirs
- Depositional and diagenetic processes of fine-grained carbonates
- Case study: Vaca Muerta Neuquén Basin
These exercises are designed to refine your skills and enhance your ability to tackle complex challenges.
Who Should Attend and Prerequisites
This course is aimed at motivated geoscientists working on carbonate plays, prospects and fields, who are seeking to share and build upon their knowledge. Managers and team leaders working on carbonate assets are also welcome. This workshop format would benefit multi-disciplinary asset teams.
Instructors
Gregor Eberli
Background
Gregor P. Eberli holds the Robert N. Ginsburg Endowed Chair in Marine Geology in the Department of Marine Geoscience at the Rosenstiel School of Marine and Atmospheric Science, University of Miami. Eberli is a leading researcher in various aspects of carbonate geology and geophysics. His research interests include carbonate sedimentology, seismic stratigraphy, and petrophysics of carbonates. He is recognized for revealing the complicated internal architecture of Great Bahama Bank and changing the view of the growth pattern of such carbonate platforms. He was the Co-Chief scientists on drilling expeditions of the International Ocean Discovery Program to the Bahamas and the Maldives that helped assess the effects of sea level fluctuations and ocean currents on carbonate platforms and the adjacent basin.
In his laboratory, he conducts petrophysical experiments that help to better understand the log and seismic signature of carbonates. In particular, he explores the influence of pore structure on sonic velocity and resistivity in carbonates and integrates these petrophysical analyses into the sedimentologic and stratigraphic analyses for improved reservoir characterization.
He is the director of the CSL – Center for Carbonate Research, which conducts basic research in sedimentology, sequence stratigraphy, petrophysics, and geochemistry in modern and ancient carbonate systems to enhance prediction of facies and petrophysical properties in subsurface carbonates.
Affiliations and Accreditation
PhD Swiss Institute of Technology (ETH) Zürich, Switzerland
MSc Swiss Institute of Technology (ETH) Zürich, Switzerland
AAPG Distinguished Lecturer - 1996/97
JOI/USSAC Distinguished, Lecturer - 1997-1998
EAGE Distinguished Lecturer - 2005 - 2006
American Association for the Advancement of Science (AAAS)
Courses Taught
N073: Workshop in Geological Seismic Interpretation: Carbonate Systems