Oil and Gas
Oil and Gas | Reservoir Development
Modelling of Reservoir Structure & Fractures - Applications to CCS, Gas Storage, Geothermal, Oil & Gas (Somerset, UK)
Next Event
This course provides a practical, integrated approach to characterising, classifying, analysing and modelling natural fractures. It uses lectures, modelling software and field examples to deliver an understanding of: geomechanics; the building and use of simple conceptual and more complex finite difference models; and the impact of fractures on well and reservoir productivity and recovery. The course combines field sessions in Somerset looking at world-class fault and joint systems along with classroom sessions assessing the Quantock Field case study that contains different host lithologies and structures that require participants to perform data analysis, fracture model design and creation of a modelling plan.
Schedule
Duration and Training Method
This course is a combination of
- classroom sessions comprising lectures, worked examples, hands-on exercises, and discussion
- visits to coastal field locations that provide illustration of fractures and opportunities for further exercises
Course Overview
Learning Outcomes
Participants will learn to:
- Characterise the presence or influence of fractures from a multitude of data sources (open-hole logs, core, image logs, mud losses, PLT’s, well tests, and production performance).
- Construct simple conceptual models of fracture origins, types, and distributions for use as input to reservoir modeling.
- Plan preliminary proposals for selecting the optimal modeling process for specific modeling objectives.
- Develop simplified implicit fracture property models (i.e. fracture porosity, fracture permeability, and sigma) in geocellular modeling packages.
- Integrate simplified fracture properties into a finite difference simulator.
- Evaluate fracture/matrix fluid exchange mechanisms of imbibition and gravity drainage.
- Instigate and run a finite difference simulator in dual porosity/dual permeability mode.
Course Content
Fault systems exposed on the North Somerset foreshores deform Triassic to Lower Jurassic stratigraphy and are located on the southern margin of the Mesozoic to Tertiary, E-W and NW-SE trending East Bristol Channel and Central Somerset Basins. Excellent 3D examples of extensional fault systems are exposed in the cliffs and on the foreshore at Kilve in North Somerset. Extensional faults range from a few metres to several hundred metres in strike-lengths and occur in dark coloured shales and interbedded limestones. Extensional and inverted fault systems are also exposed in the cliffs and on the foreshore at Watchet in North Somerset. Inverted Upper Jurassic extensional faults juxtapose grey Lower Jurassic (Lower Lias) shales and interbedded limestones against red Upper Triassic Mercia mudstones.
Itinerary
Day 1
- Introduction, terminology and definitions. Flow in faults – Darcy & Cubic Law. Introduction to Quantock Field
- Quantock Field 1. Field – Fault networks at Watchet
Day 2
- Faults as volumes, faultrock properties, Shale Gouge Ratio, geomechanics
- Quantock Field 1. Field – Fault networks at Kilve Cliff
Day 3
- Open joint systems, origins, fluid flow in fractures Cubic Law, geomechanics
- Quantock Field 2. Field - Joint systems at Kilve Foreshore
Day 4
- Modelling workflows, single porosity, dual porosity, DFNs
- Quantock Field 1 & 2 Workflows
Day 5
- Basement Fracture Systems,
- Quantock Field 3.
Who Should Attend and Prerequisites
This course is aimed at subsurface professionals working in Oil & Gas, CCS, Gas Storage and Geothermal to provide a basis for understanding and modelling fault and fracture systems and their influence on fluid flow in reservoirs and caprock systems.
Instructors
Ed Stephens
Background
Edmund Stephens is a reservoir engineer who has been in the petroleum industry since 1997, with experience in reservoir studies, field development planning, asset valuation and reserves reviews to a global customer base with a wide variety of reservoir and operational settings.
After research studies in physics at Oxford and Seattle, he worked for some years in electronics and software. He then joined the Shell International E&P with the simulator development group, well testing and delivering training. He worked as reservoir engineer on assets in Netherlands, Nigeria and Brunei, including a range of geological settings and fluid types supporting well delivery, well operations, reservoir management, reservoir studies, reserves review, exploration support and business planning. As principle reservoir engineering consultant with TRACS, he is involved in many projects across the globe including giant clastic and fractured carbonate field and development planning reviews. In the last few years he has worked on unconventional assets including tight systems and fractured basements. He is also experienced with energy transition projects including carbon sequestration (CCUS) and geothermal energy recovery.
Ed is expert in reservoir modelling and simulation, field development planning, reserves preparation and categorisation, asset valuation, business planning support and exploration support. He speaks English, French and some Dutch.
Courses Taught
N033: Characterisation, Modelling, Simulation and Development Planning in Deepwater Clastic Reservoirs (Tabernas, Spain)
N310: Carbonate Reservoir Characterisation & Modelling (Provence, France)
N335: Modelling Clastic Reservoirs (Pyrenees, Spain)
N923: Modelling of Reservoir Structure & Fractures - Applications to CCS, Gas Storage, Geothermal, Oil & Gas (Somerset, UK)
Tim Wynn
Background
Tim is the Principal Geologist and Geomechanics Specialist at TRACS International. He has over 29 years of experience in in geological and geomechanical reservoir characterisation and modelling, project management, asset evaluations (CPRs, Audits), and training aimed at supporting decision making in energy companies.
Upon completion of his PhD in 1994, Tim worked as Structural Geologist with GeoScience Limited for 6 years, before working as Geoscientist for ICE Energy Ltd, which was later acquired by TRACS International. Tim has worked for TRACS since 2001, progressing from Reservoir Geologist to his current role.
Tim has considerable experience of characterising and modelling clastic, carbonate, and basement reservoirs in the North Sea, Middle East, Europe, Russia, South America, Africa, and SE Asia. He has a particular interest in characterising and modelling fractured reservoirs and in the application of geomechanics to wellbore stability, reservoir stimulation and reservoir management. He has applied these skills to hydrocarbon, Carbon Capture & Storage (CCS) and geothermal projects and has published technical papers on many of these topics, Tim is also a Technical Paper Reviewer for the Geological Society, London, SPE, and EAGE and an Editorial Board member of Petroleum Geoscience.
Affiliations and Accreditation
PhD Imperial College, London - Structural Geology
BSc Portsmouth Polytechnic – Geology
CGeol- Chartered Geologist
Fellow of the Geological Society, London; Technical Paper Reviewer, Petroleum Geoscience Editorial Board Member
Member of the PESGB
Member of the SPE; Technical Paper Reviewer
Member of the EAGE; Technical Paper Reviewer
Courses Taught
N445: The Subsurface Applications of Geomechanics
N548: Reservoir Modelling for Storage
N923: Modelling of Reservoir Structure and Fractures (Somerset, UK)