Oil and Gas

Oil and Gas | Clastics

Reservoir Architecture of Deepwater Systems (California, USA)

Course Code: N442
Instructors:  Vitor Abreu
Course Outline:  Download
Format and Duration:
5 days

Summary

Business impact: Submarine canyons and deepwater channels are the primary conduits for the transfer of coarse sediments from the shelf to deepwater fans and are major E&P targets. The evolution of southern California included many episodes of deep water sedimentation in settings ranging from a Paleozoic cratonic passive margin to Mesozoic forearc and arc settings to Cenozoic transform, pull-apart, and continental borderland basins.

Participants will learn to describe cores, integrate core and well-log information with seismic to generate high-resolution environment of deposition maps of reservoirs in different settings. Engineering data are used to demonstrate how to improve prediction of reservoir performance. Cores, well-logs and seismic examples are compared to and contrasted with outcrops to help participants to extrapolate 2D outcrop information to 3D views of reservoir scale depositional systems.

Duration and Training Method

This is a field course, supported by classroom sessions in a 80:20 ratio. Exercises in the field will focus on description of deep water lithofacies, stratal geometries and recognizing key stratigraphic surfaces, emphasizing practical applications.

Course Overview

Participants will learn to;

  1. Assess sedimentological processes of deepwater deposition and erosion and their impact on reservoir architecture.
  2. Interpret cores, well logs and outcrops using appropriate deep water lithofacies nomenclature and definitions.
  3. Describe deep water lithofacies in cores and relate them to stratal geometries.
  4. Interpret key stratigraphic surfaces based on changes in lithofacies stacking and associations.
  5. Interpret deep water environments of deposition based on lithofacies associations, stacking and diversity.
  6. Use outcrop analogues and depositional models to better understand 3D distribution of reservoir facies.
  7. Tie rock properties to facies in building geologic models.
  8. Perform environment of deposition mapping, emphasizing impact on reservoir performance and behavior.
  9. Evaluate core, well-logs and seismic data to describe the reservoir in 3 dimensions. 

Six deepwater systems will be examined in this field course. These include in the order that we will examine them: (1) Miocene-Pliocene Capistrano Formation at San Clemente State Beach, (2) Capistrano and Monterey sediments cropping out at Dana Point Harbor, (3) Cretaceous strata in coastal exposures in La Jolla, (4) Eocene strata in sea cliffs north of Scripps Institute of Oceanography, (5) Point Loma and Cabrillo Formations in the Tourmaline Surfing Beach and (6) Cretaceous Point Loma Formation exposed at the Point Loma Peninsula.

Course activity will include:

  • Review of deepwater lithofacies nomenclature and definitions, common lithofacies associations, and interpret lithofacies in outcrops and cores
  • Interpretation of environment of deposition (EoD) and related reservoir architecture, lithofacies associations, and diversity
  • Interpretation of sequence stratigraphic surfaces in outcrop, logs, and seismic in deepwater settings and related to vertical stacking of facies
  • Use of core and well-logs to interpret EoD
  • Evaluation of reservoir geometry and connectivity in different EoD
  • The do’s and don’ts of using outcrops as reservoir analogs
  • Use of outcrop information as analog for reservoir model building
  • Evaluating seismic response, including geometry, facies, and acoustic response in deep water EoD
  • Recognizing criteria for the identification of composite sequences, sequence sets, and depositional sequences and their components in outcrops, cores, well logs, and seismic
  • Interpretation and mapping techniques for cores, well-logs, and seismic lines in deep water settings, from exploration to production business scales
  • Recognition criteria and mapping strategies for play elements in deepwater depositional settings
  • Play fairway identification and mapping

Itinerary

Day 0 Arrival in San Diego and Introduction

  • Late afternoon classroom session: field course introduction, safety presentation, deepwater lithofacies and depositional models
  • Overnight Carlsbad Beach

Day 1

  • Short classroom session: discussion on deepwater channel systems, safety briefing
  • Field: spend the day at the San Clemente sea cliffs
  • Overnight Carlsbad Beach

Day 2

  • Check out from the hotel
  • Field: Dana Point Harbor outcrops and Scripps Park outcrops (San Diego)
  • Overnight La Jolla

Day 3

  • Short classroom session: deepwater channel systems, safety briefing
  • Field: Blacks Beach sea cliffs
  • Overnight La Jolla

Day 4

  • Short classroom session: deepwater distributive systems, safety briefing
  • Field: Point Loma sea cliffs
  • Overnight La Jolla

 Day 5

  • Check out from the hotel
  • Field: morning at Tourmaline Beach
  • Late afternoon flights home

Geologists, geophysicists, petrophysicists, and reservoir engineers working on deepwater reservoirs from exploration to production. The course is also suitable for managers seeking an understanding of these reservoirs.

Vitor Abreu

Background
Vitor Abreu has 28 years of experience in the oil industry in petroleum exploration, development production and research, with a proven record in evaluating, risking and/or drilling in 22 countries and 31 sedimentary basins in the 6 continents. His areas of expertise include projects in exploration, development and production of deep water reservoirs, regional studies to define the petroleum system elements and key plays in frontier exploration, tectono-stratigraphic evolution of basins in different tectonic settings, maturing opportunities to drillable status, and play to prospect risking assessment. His experience in development and production includes several field studies in different depositional environments, with high-resolution stratigraphic interpretation integrated to engineering data to define reservoir connectivity and main baffles and barriers for effective field development plans. On research, Vitor is considered one of the world leaders on reservoir characterization of deep water systems, proposing new deep water models with strong impact in development and production.

Vitor has been an Adjunct Professor at Rice University since 1999, where he took responsibility for the course on Sequence Stratigraphy after Peter Vail’s retirement. He was the recipient of the Jules Braunstein Memorial Award (best poster presenta-tion, 2002 AAPG Annual Meeting) and was appointed AAPG’s inaugural international Distinguished Instructor in 2006. He is the current President-Elect of SEPM and has been organizing and chairing technical sessions at annual meetings for both AAPG and SEPM. More than 1000 students globally have taken his short course on “Sequence Stratigraphy for Graduate Students” since 2000. This course has been taught at annual meetings, international meetings, universities, and companies around the world. Vitor is the chief editor of SEPM’s “Sequence Stratigraphy of Siliciclastic Systems”, which has sold more than 3000 copies since publication in 2010.

Affiliations and Accreditation
PhD Rice University - Geology & Geophysics
MSc Federal University of Rio Grande - Geology
BA Federal University of Rio Grande - Geology

Courses Taught

N410: Sequence Stratigraphy Applied to Exploration and Production
N442: Reservoir Architecture of Deep Water Systems (California, USA)
N468: Deep Water Reservoirs – Exploration Risking and Development Characterisation (Distance Learning)
N517: Well Log Sequence Stratigraphy for Exploration and Production (Distance Learning)
N518: Seismic Sequence Stratigraphy for Exploration and Production (Distance Learning)
N526: Sequence Stratigraphic Controls on Deep-Water Reservoirs Architecture: Brushy Canyon Formation,Permian Basin (West Texas and New Mexico, USA)

CEU: 4 Continuing Education Units
PDH: 40 Professional Development Hours
Certificate: Certificate Issued Upon Completion
RPS is accredited by the International Association for Continuing Education and Training (IACET) and is authorized to issue the IACET CEU. We comply with the ANSI/IACET Standard, which is recognised internationally as a standard of excellence in instructional practices.
We issue a Certificate of Attendance which verifies the number of training hours attended. Our courses are generally accepted by most professional licensing boards/associations towards continuing education credits. Please check with your licensing board to determine if the courses and certificate of attendance meet their specific criteria.